Code: EC5T3

III B.Tech - I Semester – Regular/Supplementary Examinations October 2019

COMPUTER ARCHITECTURE AND ORGANIZATION (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

11x 2 = 22 M

- 1. a) What is register transfer language? Give an example for RTL.
 - b) Define bus and list the types.
 - c) What is the function of control memory?
 - d) Define Micro-operation.
 - e) Differentiate isolated I/O and Memory mapped I/O.
 - f) What is content addressable memory?
 - g) Perform the (+21) + (-16) arithmetic operations using 2's complement representation for negative numbers.
 - h) What is the need of normalization for floating point numbers?
 - i) Starting from the initial number 10011100, determine the register value after an arithmetic shift left, and state whether there is an overflow.
 - j) What is pipelining? Draw the diagram for instruction pipelining.
 - k) Write down the expressions for speedup factor in a pipelined architecture.

PART – B

Answer any <i>THREE</i> questions. All questions carry equal n $3 \times 16 =$	
2. a) What are functional units? Discuss on basic function units of a computer?	nal 8 M
b) What is instruction cycle? Explain each phase of instruction cycle with neat diagram?	8 M
3. a) Explain about microinstruction sequencing techniques specifically variable format address microinstruction	n.
b) Give the major characteristics of RISC and CISC architectures.	8 M
4. a) With a neat diagram, describe DMA transfer in a computer system.	8 M
b) Discuss about Auxiliary memory and Cache memor	y. 8 M
5. a) Derive and explain an algorithm for adding and subtracting two floating point binary numbers.	8 M
b) Explain the process of multiplying binary integers v Booth's algorithm.	with 8 M
6. a) What is parallel processing? What are its advantage Explain.	es? 8 M
b) Explain vector processing.	8 M